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Ventilator-induced diaphragmatic dysfunction (VIDD) refers to the
diaphragm muscle weakness that occurs following prolonged
controlled mechanical ventilation (MV). The presence of VIDD
impedes recovery from respiratory failure. However, the patho-
physiological mechanisms accounting for VIDD are still not fully
understood. Here, we show in human subjects and a mouse model
of VIDD that MV is associated with rapid remodeling of the
sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine recep-
tor (RyR1) in the diaphragm. The RyR1 macromolecular complex
was oxidized, S-nitrosylated, Ser-2844 phosphorylated, and de-
pleted of the stabilizing subunit calstabin1, following MV. These
posttranslational modifications of RyR1 were mediated by both
oxidative stress mediated by MV and stimulation of adrenergic
signaling resulting from the anesthesia. We demonstrate in the
murine model that such abnormal resting SR Ca2+ leak resulted
in reduced contractile function and muscle fiber atrophy for longer
duration of MV. Treatment with β-adrenergic antagonists or with
S107, a small molecule drug that stabilizes the RyR1–calstabin1
interaction, prevented VIDD. Diaphragmatic dysfunction is common
in MV patients and is a major cause of failure to wean patients from
ventilator support. This study provides the first evidence to our
knowledge of RyR1 alterations as a proximal mechanism underlying
VIDD (i.e., loss of function, muscle atrophy) and identifies RyR1 as a
potential target for therapeutic intervention.
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The need for respiratory support by controlled mechanical
ventilation (MV) is one of the main reasons for admission to

intensive care units (ICUs). Although it is life saving in the short
term, human and animal studies have shown that MV results in a
progressive reduction in diaphragmatic force-generating capac-
ity, together with diaphragm muscle fiber injury and atrophy (1,
2). These findings comprise a condition termed ventilator-induced
diaphragmatic dysfunction (VIDD) (3), which is common in an
ICU setting (4), and can interfere with the ability to discontinue
MV (5), with a major negative impact on patient outcomes and
increased health care costs (6). The precise pathways involved in
MV-induced diaphragm weakness remain partially understood.
Animal models suggest that oxidative stress plays a major role in
VIDD (7, 8) and recent studies have identified mitochondria as
an essential source of reactive oxygen species (ROS) implicated
in VIDD (9, 10). ROS production is linked to activation of
proteolytic systems such as caspases and calpains (11), which
play significant roles in degrading cytoskeletal proteins in
muscle (6, 12, 13) directly involved in the development of MV-
induced diaphragm muscle fiber atrophy and injury (7, 14, 15).
Despite many of the processes implicated in VIDD having been
associated with increased oxidative stress (16), other mechanisms
could also be involved. Indeed, in ICU, many situations including

anesthetics, MV, sepsis, or pain may induce an overstimulation of
the adrenergic response, leading to increased catecholamine syn-
thesis (17, 18). Albeit elevated levels of circulating endogenous
catecholamines have been associated to a generalized myopathy
process in animal models (19), and higher mortality in ICUs (18),
whether catecholamine release during MV may impair diaphragm
function is unknown. Similarly, the potential role of Ca2+ ho-
meostasis disruption in VIDD has never been addressed. We re-
cently observed a reduction of diaphragmatic force production
after only 6 h of MV in mice, in absence of atrophy or histological
injury (20). We hypothesized that such uncoupling between
functional and histological parameters of VIDD could be explained
by defects in Ca2+ homeostasis and excitation–contraction coupling
at an early stage of VIDD and, if so, might lend itself to early
preventive intervention. Furthermore, because deregulated Ca2+

homeostasis can lead to activation of caspases and calpains (16),
this impaired Ca2+ signaling could also help to account for the
subsequent development of diaphragm muscle atrophy and injury.
In skeletal muscle, normal excitation–contraction coupling entails
activation of voltage-sensing Ca2+ channels in the transverse tu-
bules that, in turn, activate the sarcoplasmic reticulum (SR) Ca2+
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release channel/ryanodine receptor (RyR1) (21). RyR1-dependent
Ca2+ release triggers actin-myosin cross-bridge formation and,
hence, muscle contraction (21). RyR1 is a homotetrameric mac-
romolecular protein complex that includes four RyR1 monomers
(∼565 kDa each), kinases, a phosphatase (PP1), a phosphodies-
terase (PDE4D3), and calmodulin (21), The RyR1 channel-stabilizing
subunit calstabin1 (Cal1 or FK506 binding protein 12, FKBP12)
is critical to the proper function of the channel (22). Maladaptive
cAMP-dependent protein kinase A (PKA)-mediated phosphory-
lation and redox-dependent modifications (cysteine-nitrosylation
and oxidation) of RyR1 have been linked to a loss of the normal
association between calstabin1 and the rest of the complex
(23, 24). This RyR1 remodeling, in turn, results in impaired Ca2+

handling with abnormal Ca2+ leak from the SR and associated
contractile dysfunction in conditions as diverse as heart failure,
chronic muscle fatigue, muscular dystrophy, and aging (25–28). In
the present study, we postulated that early MV-induced oxidative
stress and catecholamine release synergistically affect the di-
aphragm RyR1 complex and impair Ca2+ homeostasis, thereby lead-
ing to SR Ca2+ leak, reduced tetanic Ca2+, and eventually leading to
the development of VIDD.

Results
Increased RyR1 Open Probability in Diaphragm Fibers Correlates with
VIDD. To evaluate the remodeling and functional abnormalities
of RyR1 in the diaphragm of human patients subjected to MV,
we obtained diaphragm biopsies from brain-dead organ donor
patients who had undergone long-term MV (98 ± 65 h) imme-
diately before organ harvest. We compared these specimens to
diaphragm biopsies from short-term MV (2.3 ± 0.4 h) patients,
obtained during thoracic surgery for removal of solitary lung
nodules (see Table S1 for patients description). SR fractions
were purified to analyze the biochemical properties of the RyR1
macromolecular complex (Fig. 1 A and B). RyR1 immunopre-
cipitation after long-term MV revealed a significant increase in
RyR1 oxidation, S-nitrosylation, Ser-2844 phosphorylation, and
calstabin1 dissociation. This biochemical remodeling of the
RyR1 channels is known as the “biochemical signature” of
“leaky” RyR1 channels (21). It was associated with a significant
increase in RyR1 open probability (PO) compared with controls
short-term MV measured in channels incorporated in planar
lipid bilayers in conditions under which normal nonremodeled
RyR1 channels are tightly closed (PO = ∼0) (Fig. 1 C and D).
This elevated PO is consistent with increased SR Ca2+ leak.

Defective RyR1 Function Is an Early Pathophysiological Event in VIDD.
One limitation of human samples is the potential influence of
comorbidities and confounding factors associated with critical
illness. Moreover, histological damage in human muscle fibers
could account for both the reduction in diaphragmatic force
production and RyR1 remodeling (2). Therefore, to examine
early events in the course of VIDD, we took advantage of a
mouse model that exhibits a significant loss of diaphragmatic
force-generating capacity after only 6 h of MV (Fig. 2 A and B).
We evaluated RyR1 remodeling in the mechanically ventilated
diaphragm before the onset of histological alterations associated
with the later stages of VIDD (20). MV-induced diaphragm
muscle weakness in mice was associated with significant RyR1
remodeling consisting of RyR1 S-nitrosylation, oxidation, Ser-
2844 phosphorylation, and calstabin1 dissociation (Fig. 2 C and
D). RyR1 functional properties were next evaluated in situ by
measuring spontaneous SR Ca2+ release events (i.e., Ca2+ sparks).
A significant increase in spontaneous Ca2+ sparks frequency re-
flects increased RyR1-mediated SR Ca2+ leak (27, 28). After 6 h
of MV, Ca2+ sparks frequency was significantly increased in di-
aphragm fibers (Fig. 2 E and F). Because MV induces oxidative
stress in the diaphragm, and antioxidant treatment has been
reported to prevent VIDD, a group of mice was continuously in-
jected with Trolox, a permeable analog of vitamin E used as an
antioxidant scavenger (8, 29, 30). As reported in rats mechanically

ventilated for 12 h (29), Trolox treatment in mice ventilated for
6 h prevented MV-induced diaphragm muscle weakness (Fig. 2B).
In addition, we observed that Trolox prevented MV-induced
RyR1 biochemical remodeling (Fig. 2 C and D) and the associated
increase in Ca2+ sparks frequency (Fig. 2 E and F). Interestingly,
this RyR1 leak was due to MV only, because non-MV mice that
were identically intubated, anesthetized, and immobilized for 6 h
but maintained on a spontaneous breathing mode of respiration
with 4 cmH20 of continuous positive airway pressure (CPAP
mode) did not demonstrate profound biochemical remodeling of
diaphragm RyR1 (Fig. 3 A and B). Besides, compared with MV
samples, CPAP samples did not exhibit Calstabin1 depletion or
RyR1 oxidation. They were, however, similarly phosphorylated.
No functional alteration of the channel complex, as indicated by a
normal Ca2+ sparks frequency, was found in non-MV anesthetized
mice (Fig. 3C) and no muscle weakness could be observed (Fig.
3D) as reported (20).

Role of β-Adrenergic Signaling Pathway in VIDD. As emphasized
above, critical illness and anesthesia may result in overstimulation
of the adrenergic system. The expression pattern of β-adrenergic
receptors was assessed by immunoblot in the diaphragm, which
expresses predominantly β2 isoform and β1 in a lower proportion
(Fig. 4A). To address the role of β-adrenergic receptors in VIDD,
mice were ventilated for 6 h in the presence of the nonselective
β1-β2 receptors antagonist, propranolol, or with the selective β2
antagonist, ICI118551 (31). Both beta blockers prevented the di-
aphragm weakness after 6 h of MV (Fig. 4B). This effect was also
accompanied by a lower remodeling of the RyR1 complex. Both
propranolol and ICI118551 prevented calstabin1 depletion and
S2844-RYR1, whereas RyR1 oxidation persisted (Fig. 4C). To
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Fig. 1. VIDD is associated with defective RyR1 in human diaphragm muscle.
Representative immunoblots (A) of immunoprecipitated RyR1 from human
diaphragm samples collected after short-term (control) and long-term (MV)
controlled mechanical ventilation in humans (Table S1). (Each blot corre-
sponds to adjacent wells of the same gel.) Bar graphs (B) show quantification
of immunoblots, relative to total RyR1 (mean ± SEM, n = 10 and 9 in control
and MV, respectively, *P < 0.05, MV vs. control). CysNO, thio-nitrosylation;
DNP, 2,4-dinitrophenylhydrazone; P−RyR1, phosphorylated RyR1 (at serine
2844). (C) Single-channel traces of RyR1 incorporated in planar lipid bilayers
with 150 nM Ca2+ in the cis chamber, corresponding to representative ex-
periments performed with human diaphragm biopsies from short-term and
long-term MV groups. (D) Controlled mechanical ventilation increases RyR1
PO: Mean PO was 0.0006 ± 0.0003 in control (n = 18), and after MV, the PO
increased to 0.0167 ± 0.00754 (n = 40).
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account for RyR1 phosphorylation, PKA activity was measured in
diaphragm samples after 1, 2, 3, and 6 h of ventilation and com-
pared with a maximal level of PKA stimulation obtained by
injecting isoproterenol (3 mg/kg) 30 min before euthanizing the
mice (Fig. 4D). PKA activity increased after 1 h of MV to reach a
plateau between 2 and 6 h that was not significantly different from
the maximal level. When the animals were treated with ICI118551
(10 mg/kg) during the MV, the level of PKA activity was signifi-
cantly reduced and was similar to the basal level obtained by
treating control animals with ICI118551 (10 mg/kg).

RyR1 Is a Potential Therapeutic Target in VIDD. To directly target
RyR1 and, thus, assess its role as a major pathophysiological
target in VIDD, we treated mechanically ventilated mice with
the rycal S107. Rycals are small orally available agents known to
prevent depletion of calstabin1 from the RyR1 complex despite

PKA phosphorylation, S-nitrosylation, and/or oxidation of RyR1
(27, 28). Consistently, in mice, S107 prevented depletion of cal-
stabin1 from RyR1 macromolecular complex without protecting
against RyR1 oxidation and phosphorylation (Fig. 5 A and B). In
addition, S107 prevented the loss of diaphragmatic force-gener-
ating capacity induced by MV (Fig. 5C) and the increase in
Ca2+ spark frequency (Fig. 5D). These data suggest that re-
ducing RyR1-mediated SR Ca2+ leak with S107 improves di-
aphragmatic muscle force production.

Evaluation of the Diaphragm After 12 H of MV. The hallmarks of
VIDD are muscle atrophy and impaired contractility (2). With
6 h of ventilation in mice, we are able to reproduce the loss of
force production without any histological damage (20). To
further evaluate the role of RyR1 in VIDD, we evaluated di-
aphragm histological characteristics (i.e., fiber cross-sectional
area, fiber type distribution) and force production following
12 h of MV. The mean cross-sectional area of all diaphragm
fibers was significantly reduced compared with control animals
(Fig. 6 A, B, and G). There was no significant alteration in the
proportions of type I (slow twitch) and type II (fast twitch) (Fig.
6 A and B and Fig. S1). A significant reduction in force pro-
duction (Fig. 6 H and I) accompanied this atrophy after 12 h of
ventilation. Interestingly, treatments with the specific β2 an-
tagonist ICI118-551 or S107 prevented both muscle fiber at-
rophy and loss of contractility. It is to note that none of the
treatments had any effect on fiber size or force production in
control condition.
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Fig. 2. RyR1 mediated SR Ca2+ leak in murine diaphragmmuscle after 6 h of
MV. (A) Representative records of diaphragmatic specific force production
measured ex vivo at 1, 30, and 100 Hz in muscle bundles under isometric
conditions in control and under controlled mechanical ventilation during 6 h
(MV, 6 h) mice. (B) Average force–frequency relationships recorded in control
(n = 8), mechanically ventilated for 6 h (MV, n = 10), mechanically ventilated
for 6 h and treated with Trolox (MV-trolox, n = 8) groups. Representative
immunoblots (each blot corresponds to adjacent wells of the same gel) of
immunoprecipitated RyR1 (C) and bar graphs (D) showing quantification of
proteins relative to total RyR1 immunoprecipitated from murine diaphragm
samples collected in control, MV, and MV-Trolox groups. CysNO, thio-nitro-
sylation; DNP, 2,4-dinitrophenylhydrazone; P*RyR1, phosphorylated RyR1 (at
serine 2844). Spontaneous SR Ca2+ release events were recorded in fluo-4-
loaded permeabilized diaphragm fibers by laser scanning confocal microscopy.
(E) Representative ΔF/F line-scan images (1.54 ms per line) recorded in control,
after MV and after MV with Trolox treatment. (F) Mean Ca2+ sparks frequency
was used as an index of resting SR Ca2+ leak. Results are expressed as mean ±
SEM (*P < 0.05, MV vs. control; #P < 0.05, MV-Trolox vs. MV).
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(B) show quantification of immunoblots, relative to total RyR1. Results are
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loaded permeabilized diaphragm fibers by laser scanning confocal micros-
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and control mice. (control n = 7, CPAP n = 6). (D) Average specific force–
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Discussion
In the present study, we report that patients under MV with
VIDD, and mice subjected to MV, exhibit the biochemical
signature of leaky RyR1 channels and evidence of intracellular
Ca2+ leak. We also demonstrate that this RyR1 dysfunction is driven
by β-adrenergic signaling pathway in synergy with MV-induced
oxidative stress, which has been extensively studied in VIDD (16).
Indeed, RyRs are highly sensitive to oxidative/nitrosative stress
in skeletal muscle and in other tissues (25, 32–34). This RyR1
remodeling occurs in other chronic or inherited disease includ-
ing heart failure (25), diabetes (35), and Duchenne muscular
dystrophy (28, 33). Postranslational modification of RyR1 also
progresses with aging and partially accounts for age-dependent
muscle weakness (27).
In the mouse model, Ca2+ sparks frequency is commonly used

as an index of RyR1-mediated SR Ca2+ leak and is complemen-
tary to the biochemical analyses and electrophysiological studies
used to demonstrate the contribution of leaky RyR1 in skeletal
muscle disorders (27, 28). Therefore, as reported (24, 27, 28),
leaky RyR1 may account for a reduction in the Ca2+ transient and
force production, without the need to invoke other muscle pa-
thology such as atrophy or injury. Indeed, in the VIDD mouse
model, we showed a significant level of diaphragmatic muscle
weakness without any histological modifications of the muscle after
6 h of MV, supporting the idea that muscle damage or atrophy may
not by itself explain VIDD-induced muscle weakness (20). These
data suggest that impaired RyR1 function is an early event that
precedes muscle damage. Furthermore, early RyR1-dependent

defects in intracellular Ca2+ homeostasis may be an important
mediator of subsequent diaphragmatic muscle remodeling in VIDD
as reported in Duchenne muscle dystrophy (28).
To date, oxidative stress was the most documented patho-

physiological mechanism accounting for VIDD. The antioxidant
Trolox was reported to prevent VIDD in a rat model (8). It was
also reported that oxidative stress is required for MV-induced
activation of calpain and caspase-3 in the diaphragm (30), but
the involvement of Ca2+ homeostasis while hypothesized had
never been demonstrated. Our data establish that Trolox also
prevents RyR1 dysfunction induced by MV in mice. Thus, RyR1
oxidation appears as a prerequisite for RyR1 dysfunction in
VIDD. This aspect was further investigated by using the CPAP
mode of ventilation to keep the airways continuously open, even
in a context of sedation, allowing spontaneous breathing. Re-
spiratory muscles remain active and are not unloaded or pas-
sively stretched as they are in MV, a situation that may explain
why they are protected under CPAP from VIDD development
(26). Interestingly, our CPAP data indicate that maintaining di-
aphragm activity prevents RyR1 oxidation and VIDD develop-
ment, even in presence of RyR1 PKA phosphorylation. The
origin of ROS production remains unclear during VIDD al-
though recent studies rather consider that mitochondria repre-
sent the main source of ROS (10). Recent studies have identified
a new transduction pathway in which the microtubule network
acts as a mechano-transduction element that activates NADPH-
oxidase 2 (Nox2)-dependent ROS generation during mechanical
stretch (36). Such pathway could therefore contribute to this
primary ROS production. This hypothesis is supported by the
beneficial effect of apocynin on the diaphragm during pro-
longed MV (37). However, we have demonstrated that RyR1
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dysfunction and SR-mediated Ca2+ leak is also a cause of mi-
tochondrial ROS production (27). We also hypothesized that the
phosphorylation status of RyR1 secondary to PKA activation
resulted from increased sympathetic tone during anesthesia.
Indeed, anesthetic agents such as pentobarbital are known to act
as negative inotropic agents and to interfere with the function of
the baroreceptor reflexes (38, 39). These systemic effects may
therefore contribute to an elevation of endogenous circulating
catecholamine during anesthesia although this elevation is so far
not clearly documented in ICU patients. Nevertheless, the ad-
renergic system is known to be overstimulated in patients with
critical illness (17, 18). Furthermore, exogenous catecholamines
are used to treat cardiovascular instability in critically ill patients
(40), amplifying the endogenous catecholamine burst release.
This adrenergic burst would support the hypothesis that such
stress would be prolonged, becoming maladaptive and exerting
adverse effects. The increased level of RyR1 PKA phosphory-
lation in our human diaphragm samples is in line with this ob-
servation. Such β-adrenergic overdrive is consistent with the
beneficial effects of β-adrenergic receptor antagonists that we
observed (i.e., prevention of muscle weakness and atrophy). In-
terestingly, both beta blockers prevented RyR1 phosphorylation
and depletion of calstabin1 without decreasing RyR1 oxidation.
These results combined with those obtained in the CPAP model
demonstrate that both RyR1 oxidation and phosphorylation are
required to account for the RyR1 dysfunction in VIDD. Given
that RyR1 is PKA phosphorylated and oxidized in VIDD, the
specific use of β2-adrenergic antagonists could be a potential
future target to potentially prevent VIDD. This observation is

however in contrast with a recent study showing that low-dose
theophylline treatment can significantly improve diaphragmatic
movements in patients with VIDD without any significant im-
provement for weaning time and total ventilation time (41).
Theophylline is a methylxanthine that inhibits phosphodiester-
ases and increase cAMP level as β-adrenergic receptor. This
effect could explain in part the positive inotropism that accounts
for better diaphragm motion. Because VIDD is known to be one
of the major contributors to weaning difficulties, we cannot
conclude that theophylline prevents VIDD. Nevertheless, the
beneficial effects of beta blockers may not be specifically due to
improved RyR1 function and may also have adverse effects. To
address this potential lack of specificity, we demonstrate that
“fixing” specifically this RyR1-mediated leak with S107 can
prevent muscle weakness induced by 6 and 12 h of ventilation in
mice. Fixing SR Ca2+ leak prevents also changes in a fiber cross-
sectional area after 12 h of MV. SR Ca2+ leak may contribute to
the activation of Ca2+-dependent proteolytic enzymes (caspases
and calpains) and Ca2+-dependent regulation of gene expression
involved in deleterious muscle injury and wasting processes (42).
As mentioned above, RyR is a target in many pathophysiological
conditions (21). This finding can be explained in part by the
ubiquitous function of Ca2+ in cellular processes and by the
enormous size of the RyR macromolecular complex and, in
particular, its cytoplasmic domain that serves as a redox sensor
(43). Therefore, the fact that RyR1 is a potential mediator of
muscle weakness in VIDD suggests that patients with comor-
bidities and/or confounding factors that may affect RyR1 func-
tion such as heart failure or aging may have a greater vulnerability
to VIDD.
Our mouse model of VIDD has some limitations. First, we

used skinned fibers to evaluate Ca2+ sparks. This procedure
keeps the RyR1 channel in its natural environment but removes
the functional interaction with the voltage sensor (L-type Ca2+

channels, CaV1.1). Whether a defective RyR1 could negatively
regulate other structures involved in intact fibers during excita-
tion–contraction coupling such as CaV1.1 is an interesting
question that is beyond the scope of the present study. Second,
early events involved in VIDD, with a 6- to 12-h period of
controlled mode MV to induce diaphragm weakness in mice,
may not be directly applicable to other animal models (20) or to
patients on long-term ventilation in the ICU. However, we have
recently demonstrated the link between duration of controlled
MV and diaphragmatic dysfunction in ICU patients and em-
phasized the rapid onset of VIDD during MV (2). It is likely that
many of the same mechanisms of VIDD are involved across
species, although the time course appears to be more protracted
in humans. In addition, assisted modes of ventilation, which
permit a certain level of diaphragm activity, are likely to mitigate
the development of VIDD (44). This observation may explain
why CPAP on the basis of RyR1 remodeling does not decrease
diaphragm contractile activity (45) and does not induce VIDD.
Nevertheless, it remains the case that many patients with acute
respiratory distress syndrome or acute brain injury are in fact
ventilated in controlled mode, either with or without associated
neuromuscular blockade. In this regard, 3 d of controlled mode
MV is not uncommon in the ICU and furthermore, additional
comorbid factors including sepsis, metabolic disorders, and drugs
may even further shorten the latency to VIDD onset (46). VIDD
is a major determinant of the ability to successfully wean patients
from the ventilator (16, 46). Moreover, we recently reported that
diaphragmatic weakness correlates with disease severity and
prognosis, suggesting that it is a form of organ failure in venti-
lated patients (47). Indeed, diaphragmatic weakness normally
appears in human after 3–4 d of MV (2). Therefore, any thera-
peutic strategy, which may prevent this negative evolution,
should be considered with a level of great interest.
In conclusion, this study demonstrates the pathophysiologi-

cal role of RyR1 in VIDD and strongly supports the hypothesis
that preventing the RyR1-mediated SR Ca2+ leak induced by
MV may provide a new therapeutic approach for preventing

0 40 80 120
0

8

16

24

32

Frequency(Hz)

Sp
ec

ifi
c 

fo
rrc

e(
N

.c
m

2 )

Control+ICI
MV12h MV12h+ICI 

Control

*
*

Contro
l

MV12h

MV12h+S107

Contro
l+S107

Contro
l+ICI

MV12h+ICI
0

200

400

600

800

C
SA

 (µ
m

2 ) *

Slow Fast

C
on

tro
l

M
V1

2h
+ 

IC
I

C
on

tro
l+

IC
I

Slow Fast

M
V1

2h
+S

10
7

C
on

tro
l+

S1
07

M
V1

2h

G

A

IH

0 40 80 120
0

8

16

24

32

Frequency(Hz)

Sp
ec

ifi
c 

fo
rc

e(
N

.c
m

2 )

MV12h
Control+S107
MV12h+S107

Control

*

B

C

D

E

F

50 µm

Fig. 6. RyR1 dysfunction contributes to muscle fiber atrophy after 12 h of
ventilation. Representative immunostaining of fast and slow diaphragm
muscle fibers in mouse. Antibodies against fast- and slow-type myosin
ATPase were used to perform immunostaining on cryosections of mouse
diaphragm. Muscle membrane was counterstained with dystrophin anti-
bodies. White squares indicate fast fibers, whereas the asterisks show the
slow fibers in consecutive sections. Staining was performed in control (con-
trol) (A), mice under controlled mechanical ventilation during 12 h (MV12h)
(B), control treated by ICI118551 (Control+ICI) (C), control mice treated
by S107 (Control+S107) (D), mice ventilated during 12 h and treated by
ICI118551 (MV12h+ICI) (E), and mice ventilated during 12 h and treated by
S107 (MV12h+S107) (F). (G) Quantification of cross-section are in each condi-
tion (n = 192–852 fibers for each group, *P > 0.05). (H) Diaphragm muscle-
specific force–frequency relationships recorded in control (n = 7), control+
CI118551 (n = 3), MV12h (n = 10), andMV12h+ICI118551 (n = 6) (*P > 0.05, MV
vs. control and MV12h+ICI). (I) Diaphragm muscle-specific force–frequency
relationships recorded in control (n = 6), control+S107 (n = 3), MV12h (n = 6),
and MV12h+S107 (n = 5) (*P > 0.05, MV vs. control and MV12h+S107).

Matecki et al. PNAS | August 9, 2016 | vol. 113 | no. 32 | 9073

M
ED

IC
A
L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
24

, 2
02

1 



www.manaraa.com

diaphragm muscle dysfunction in patients who require artifi-
cial respiratory support.

Materials and Methods
HumanModel of VIDD. The study in humans was conducted in accordancewith
the World Medical Association Guidelines for research in humans and ap-
proved by the Institutional Ethics Board of theMontpellier University Hospital
(protocol NCT00786526). All subjects or their surrogates provided written
informed consent to participate in the study.

Murine Model of VIDD. The experimental design has been described in a
recent study (20) and has been reviewed and approved by the Animal Care

and Use Committee Languedoc-Roussillon and recorded under reference
no. CEEA-LR-12078.

Statistics. Data are presented as mean values ± SEM. For biochemical studies
and contractile properties, the differences between group means were an-
alyzed by the ANOVA test. Differences in RyR1 open probability were compared
by unpaired t test with Welch’s correction. Statistical significance was defined as
*P < 0.05. Detailed methods are presented in SI Materials and Methods.
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